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Abstract

The transverse forces on submerged cylinders in nearly axial flow were studied experimentally in a towing tank. Two

rigid cylinders with length to diameter ratios of 10 and 30 were towed with angles from 0� to 20� between their

centerline and the incoming flow, and with a combination of forced harmonic oscillations in the normal direction and

constant speeds along the cylinder axis. The most important parameters are found to be the angle of attack and a

Reynolds number combining the longitudinal and normal components of the flow. The Reynolds number is important

because the transition from laminar to turbulent boundary layer due to the axial component of the flow has a significant

influence on the normal force. This seems to be true both for constant and oscillating angle of attack. The finite length

of the cylinder and the Keulegan–Carpenter number associated with an oscillating cylinder in cross-flow are found to be

less influential than expected. Time-domain simulation models for the normal force suitable for general motion of the

body are discussed. For constant angles of attack their standard deviation is found to be comparable to the

measurement accuracy, but in the case of forced transverse oscillations the estimated errors of the force models increase

to a factor three or more of the measurement errors.

r 2006 Published by Elsevier Ltd.
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1. Introduction

Knowledge of the normal force on a cylinder in near-axial flow is necessary in the analysis of marine system behavior

such as the motion of towed sonar and hydrophone arrays, current loading on pipelines and marine risers, and

maneuvering of slender underwater vehicles and even surface ships. This paper discusses the viscous hydrodynamic

normal forces on a long cylinder of constant cross-section in infinite fluid when the angle of attack is small. The angle of

attack is the angle between the ambient flow and the cylinder axis, and by small is meant that the angle is smaller than

what is normally accepted as a valid region for the cross-flow principle. The angles discussed range from 0� to 20� in the

case of a stationary cylinder, while the amplitude of the angle varies from 4� and up to 50� in the oscillating case. The

normal force is defined as the force normal to the cylinder axis in the plane formed by the incident flow velocity vector

and the cylinder axis. Such a force will include skin friction, but at some point the flow will separate on the leeward side

of the cylinder and pressure forces similar to the drag of bluff bodies become significant and will have a component

normal to the cylinder axis. If the flow is not symmetric about the plane of the cylinder axis and the incident flow, there
e front matter r 2006 Published by Elsevier Ltd.
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will in addition be a bi-normal force component which is not presently considered. Also, the flow, and then the force,

may develop along the cylinder so that a moment is created. For parts of a body where the cross-section changes, like

nose and tail, there will also be a transverse force due to potential flow, usually found by slender body theory (Lighthill,

1960; Newman, 1977). These kinds of forces are not focused on here and care is taken to exclude them in the

experimental set-up.

The normal force on a cylinder at constant angle of attack moving at constant speed relative to the ambient flow can

be formulated in a general form suggested by Taylor (1952):

Fn ¼ CnðaÞ12rV2Ld. (1)

Here V is the relative velocity between the cylinder section and the ambient flow, r the density of the fluid, d the

diameter and L the length of the section, and a the angle of attack. The normal force coefficient CnðaÞ may for example

be expressed in a polynomial expansion in the sine of the angle

CnðaÞ ¼ Cn1 sin aþ Cn2 sin aj sin aj, (2)

where the absolute sign in the second term is used to preserve the sign of the resulting force. The normal force can also

be expressed in terms of the normal component of the velocity v as

v ¼ V sin a, (3)

and Eq. (1) then becomes

Fn ¼ Cn1
1
2
rVvLd þ Cn2

1
2
rvjvjLd. (4)

Note that the coefficients are the same in both formulations.

In studies of the transverse stability of towed arrays, only small transverse motions are considered and the angle of

attack (a) is usually assumed small enough for the flow not to separate (Dowling, 1988; Triantafyllou and

Chryssostomidis, 1988). Then the normal force is expressed as the normal component of the skin friction, here obtained

by setting the coefficients in Eq. (2) to

Cn1 ¼ pCF ,

Cn2 ¼ 0. ð5Þ

The coefficient CF is the skin friction coefficient for a ¼ 0 and the factor p is included for a circular cylinder, since

Eq. (1) is normalized by the diameter times the length rather than the wetted surface. For small amplitudes and low

frequencies of the transverse motion, the relative velocity V is approximately equal to the tow-speed U of the array and

may therefore be considered a constant. Inserting this in Eq. (4) gives that the resulting expression for Fn is linear with

the normal component of the incident flow, facilitating a linear equation of motion for the towed array. A throughout

discussion of this equation and alternative values of Cn1 is given by Paı̈doussis (2004).

For high angles, the normal force is usually expressed by the drag of a cross-section of the body when exposed to the

normal component of the velocity, v; see, e.g., Faltinsen (1990, Chapter 7). This is denoted as the cross-flow principle

and may be expressed by setting

Cn1 ¼ 0,

Cn2 ¼ Cd . ð6Þ

Here Cd is the mean drag coefficient for steady-state flow past a 2-D section. This assumes that the flow pattern along

the leeward side of the cylinder corresponds to a fully developed wake behind a cross-section and implicitly that the

angle of attack is close to 90�. The range of allowed angles is a matter of comparison with experiments, and are often

said to be above 45� (Faltinsen, 1990). For 2-D steady flow past a cylinder in infinite fluid it is well known that the value

of the drag coefficient changes with Reynolds number of the flow, roughness of the cylinder surface, and the turbulence

intensity of the incident flow (Faltinsen 1990, Chapter 6). There is a sub-critical region where the boundary layer flow is

laminar up until the separation point and a transcritical region where the flow becomes turbulent well before the

separation point. Typical values for a smooth cylinder and low turbulence of the incoming flow are Cd ¼ 1:2 for sub-

critical region and Cd ¼ 0:8 for the transcritical region (Blevins, 1992, Table 10.18). There is also a critical region

between the two where the drag coefficient changes rapidly with Reynolds number and may become even lower than in

the transcritical region. For low angles the boundary layer may be turbulent due to the tangential component of the

flow, and the effect of this on the normal force is discussed in Section 3.

The 2Dþ t principle described by Faltinsen (2005) accounts for the fact that the flow pattern associated with the

cross-flow model may not have time to develop along a finite length cylinder due to the axial component of the incident
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flow. Consider an Earth-fixed plane perpendicular to the axis of the body. As the body pierces the plane, its trace moves

laterally in the plane with a velocity v. The flow in the plane is then assumed 2-D but time dependent and similar to the

impulsive start of a cylinder (Jorgensen and Perkins, 1958; Bryson, 1959). This is expressed in the form of Eq. (2) by

averaging the drag coefficient along the cylinder in the second term:

Cn1 ¼ 0,

Cn2 ¼ CD ¼
1

L

Z xL

x0

Cd ðx; aÞdx, ð7Þ

where x0 and xL correspond to the position where separation starts and the aft end of the cylinder, respectively. Cd ðx; aÞ
is the time-dependent drag coefficient of an impulsively started cylinder cross-section mapped along the length of the

test-section, setting x ¼ x0 þ Vt cos at. The time t is zero at the time of the impulsive start in the 2-D case. Here it is

assumed that separation starts at the transition from the nose (with expanding cross-section) to the part of the body

with constant cross-section, as concluded by Jorgensen and Perkins (1958). The normal force on the part of the body in

front of the separation point is not included in this analysis. The force history of an impulsively started cylinder is

approximated by a fifth-order polynomial fit to experimental results by Sarpkaya (1966); see Faltinsen (2005). This is

the solid line in Fig. 1. This mapping implicitly assumes laminar boundary layer flow, and since there will always be a

finite acceleration in experiments a true impulsive start cannot be obtained. Both effects are likely to influence the time

history, see for example Sarpkaya’s result with a turbulent boundary layer where a constant value of Cd was reached

almost instantly (Sarpkaya, 1966). Therefore, an alternative time history is given by the dashed line in Fig. 1, where the

fifth-order polynomial is scaled so that the peak coincides with the peak time found numerically by Koumoutsakos and

Leonard (1995), also for laminar boundary layers. Averaged drag coefficients based on the original curve fit are shown

in Fig. 2(a), while drag coefficients based on the scaled curve fit are shown in Fig. 2(b). As shown in Fig. 2, the 2Dþ t

model will generally give smaller normal forces than the cross-flow principle for the same cylinder and angle.

Unfortunately, the actual value depends highly on the time history of the 2-D drag coefficient, so a quantitative value

will be somewhat uncertain.

In cases where the acceleration of the cylinder is not zero, the hydrodynamic force will depend not only on the

velocity but also on the acceleration. In the current case the ambient fluid is at rest, so only the acceleration of the body

is considered. The so-called Froude–Kriloff force, or the force due to the ambient fluid pressure, is zero. For periodic

motion it will be assumed that the normal force is also periodic, so it can be expressed in a Fourier series of a normal

force coefficient Dn which includes also the effect of acceleration:

FnðtÞ ¼ �DnðyÞ12ru2 Ld, ð8Þ

DnðyÞ ¼ A0 þ
X1
k¼1

ðAk sin kyþ Bk cos kyÞ, ð9Þ

where y ¼ ot, o is the circular frequency of the forced oscillation and u is the incident velocity along the cylinder axis.

The use of u to normalize the force is based on the set-up of the experiment, since this is the tow-speed of the carriage.

The transverse motion of the cylinder is symmetric about the mean horizontal position and, assuming that this is the

case also for the normal force, A0 ¼ 0 and only odd values of k need to be included in the series. The coefficients can

then be estimated from the measurements by

Ak ¼
1

p

Z 2p

y¼0
DnðtÞ sin kydt, ð10Þ

Bk ¼
1

p

Z 2p

y¼0
DnðtÞ cos kydt, ð11Þ

valid for k � 1. Here DnðtÞ is the measured force coefficient. The assumptions here are the same as used by Keulegan

and Carpenter (1958), and nothing in the current experiments seems to contradict them.

Alternatively, the force may be expressed as the sum of terms depending on the acceleration and velocity of the

cylinder:

Fn ¼ �Car
pd2

4
L_v� CnðaÞ

1

2
rV2Ld, (12)

where Ca is the added mass coefficient and _v is the time derivative of the normal velocity v. The term associated with _v
will in the following be denoted the inertia term. The velocity-dependent term in Eq. (12) will be termed the drag part,

and is here expressed in the same way as for the stationary cylinder in Eq. (1), with a relative velocity V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

.
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Fig. 2. Averaged drag coefficients as function of the angle of attack according to 2Dþ t theory: (a) based on the solid line in Fig. 1; (b)

based on the dashed line in Fig. 1.
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Fig. 1. Drag coefficient of impulsively started cylinder section with laminar boundary layer: —, curve fit of experimental data from

Sarpkaya (1966); – –, curve fit scaled so peak coincide with numerical results of Koumoutsakos and Leonard (1995).
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In general, the coefficients Ca and Cn are not constant but depend on the history of the motion (Keulegan and

Carpenter, 1958).

Using the velocity-based formulation of the normal force in Eq. (4) and the cross-flow principle with coefficients as in

Eqs. (6), (12) becomes

Fn ¼ �Car
pd2

4
L_v� Cd

1

2
rvjvjLd (13)

which is similar to Morison’s equation but valid for a cylinder oscillating in a fluid at rest.

Forcing the coefficients Ca and Cd in Eq. (13) to be constant, they can be directly related to the leading terms of the

Fourier series of CnðyÞ by a procedure described by Keulegan and Carpenter (1958). The transverse oscillation is
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described by y ¼ A sin y, so the transverse velocity and acceleration is

v ¼ oA cos y, (14)

_v ¼ �o2A sin y. (15)

Inserting this in Eq. (12) and comparing with the Fourier series in Eqs. (8) and (9) the added mass coefficient is

Ca ¼ �
2

p
A

d

oA

u

� ��2
A1. (16)

The series expansion of the quadratic velocity term in Eq. (13) is (Keulegan and Carpenter, 1958)

ðoAÞ2 cos yj cos yj ’ ðoAÞ2
8

3p
cos yþ

8

15p
cos 3yþ � � �

� �
. (17)

Comparing this to the drag part of Eq. (13) gives in leading order of cos y

Cd ¼
3p
8

oA

u

� ��2
B1. (18)

If the leading order term of the cosine part of the Fourier series is compared to the drag term in Eq. (12), the normal

force coefficient can be expressed by

CnðaÞ ¼ B1
oA

u

� ��1
cos a sin a, (19)

where the coefficient is constant in time but varies with oscillation amplitude.

Note that all these expressions include the first terms of the Fourier series only, so that Eq. (12) with constant

coefficients is only a first-order approximation to the complete normal force.
2. Measurement procedure and accuracy

The normal forces on two cylinders of length 1.5 and 0.5 m were measured when towed with constant carriage speed

either at a constant angle of attack or with a harmonic oscillation in the normal direction. The main parameters of the

experiment are given in Table 1.

The actual set-up is shown in Fig. 3 with the Cartesian coordinate system ðx; y; zÞ indicated. This is a body-fixed

system with x-axis along the cylinder axis positive in the tow direction when a ¼ 0 and with the z-axis pointing upwards.

For all the tests performed here, the plane of the normal force corresponds to the x–y plane in Fig. 3. The nose was

made of polycarbonate and was parabolic in shape. The test-sections were spray-painted thin-walled steel pipes with

plugs at each end, so the cylinders were dry inside. The aft support structure was also made of steel, with details of

aluminum. The complete set-up was mounted on the towing carriage in the Marine Cybernetics Laboratory at the

Marine Technology Center, NTNU. This basin is 30m long, 6m wide and 1.5m deep; see Fig. 4. The carriage allows

forced motions of a model in five degrees of freedom. The tow depth of the cylinder axis was 540mm, or about 11

diameters. Load cells of type HBM PWSM-10 were placed between the nose and the test-section and between the

test-section and the aft support structure. These cells measured the shear force in the y-direction indicated in Fig. 3 and

was connected to a HBM MGC+ amplifier and D/A converter unit. The position of the carriage at all times was also

recorded by this unit based on encoder output from the carriage motors. All signals were recorded at 100Hz and filtered

at 20Hz before storage on disk. Final signal analysis was done on a PC using the MATLAB package from MathWorks

Inc.

For constant angles, the set-up was rotated about the z-axis in Fig. 3, while the forced oscillation was performed in

the y-direction. In all cases the cylinder was towed with constant speed in the direction coinciding with the x-axis when

a ¼ 0. The orientation and motion of the test-section were described as inputs to the carriage control system. To ensure

that the orientation of the cylinder was correct, angles on both sides of the assumed zero angle position were tested and

checked before the tests involving forced oscillations were performed.

The time between each run was at least 10min in order to allow waves and wakes to dissipate. The forces were

measured from before the carriage started to move and until it had come to a complete stop, while the results presented

here are based on the steady-state part of the recordings. The normal force on the test-section was taken as the
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Table 1

Parameters for the experiment

Length-to-diameter ratio L=d ¼ 31:25 and 10.46

Masses: nose section 0.255 kg

Long test cylinder 4.480 kg

Short test cylinder 1.780 kg

Reynolds numbers ReL ¼ 0:19� 2:0� 106

Tow-speed U ¼ 0:4–1:4m s�1

Diameter d ¼ 0:048m
Roughness-to-diameter ratio k=d ’ 3� 10�5

Water density r ¼ 998:5kgm�3

Dynamic viscosity n ¼ 1:05� 10�6 m2 s�1

Constant angles of attack a ¼ �5� to þ20�

Oscillation amplitude-to-diameter ratios A=d ¼ 1, 2, and 3

Oscillation frequency range 0.127–0.547Hz

X Y

Z

650.0mm 550.0mm

200.0mm

750.0mm

1500.0mm

200.2mm

Nose

Test Section

Support
Structure

Location of
Force Sensors

Fig. 3. Experimental set-up for transverse forces on a submerged, rigid cylinder, here with the long test-section. Rotation was

performed about the z-axis indicated and oscillation along the y-axis.
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difference between the force measurements in each end of the section. In the case of forced oscillations, the inertia forces

due to the mass of the test-section as listed in Table 1 were subtracted before any analysis was performed.

The accuracy of the results will be expressed by the 95% confidence interval as outlined in ITTC (1990) and Coleman

and Steele (1989), with both precision and bias errors included. It is then expected that for repeated measurements of

some coefficient C, Eq. (20) is true for 95% of the results:

C 2 C0 � ec, (20)

ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t95

Smffiffiffiffiffi
N
p

� �2

þ b2m

s
. (21)

Here C0 is the estimated value obtained from measurements and ec describes the width of the error band with a specified

confidence. Sm is the standard deviation of N repeated measurements and the factor t95 corresponds to a 95%
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Table 2

Estimated error levels for constant angle of attack

Angle of attack 0�–6� 6�–12� 412�

Standard deviation of measured force ðNÞ Sm 0.01 0.03 0.06

Error in calibration factor ðNÞ b1 0:25� 10�3 1:0� 10�3 5:0� 10�3

Max deviation of angle of attack (degrees) b3 0.01 0.05 0.15

Max error in tow-speed ðms�1) b4 3:5� 10�3

Others ðNÞ b5 0:1Sm

Bias error, Eq. (22) bm 4:0� 10�5 2:6� 10�4 2:0� 10�3

Total error, Eq. (21) ec 0:7� 10�3 2:1� 10�3 4:6� 10�3

Fig. 4. Experimental set-up mounted in the Marine Cybernetics Laboratory.
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confidence interval using the Student’s t distribution with N � 1 degrees of freedom. For a constant angle, Sm was

estimated by repeating selected runs six or more times. For the oscillating case, all parameter estimations were done for

a single period, and the Sm value represents the standard deviation from period to period. The lowest number of periods

used in the analysis is 4 for the cases that combine highest speed and lowest frequency, while in most cases 12 or more

periods are included.

Known bias errors, such as the true angle of zero force, were corrected for in the analysis of the results. Still, there will

be some uncertainties that will not vary when repeating the experiments, given by bm in Eq. (21). They are calculated

from

bm ¼
Xi¼M

i¼1

ffiffiffiffiffiffiffiffiffiffi
k2i b

2
i

q
, (22)

ki ¼
qC

qX i

. (23)

Here bi is the bias uncertainty of parameter X i, and ki represents the effect of this error on the result, usually known as

the sensitivity. Identified bias errors and their estimated values are given in Table 2.

The main challenge of designing and building the experimental set-up was to ensure sufficient rigidity of the structure.

All position measurements are related to the support structure, so any flexibility in the structure will not be captured.

The use of a steel pipe ensured rigidity of the test-section, while the aft support and load cell assembly represented the
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main challenge, particularly since some flexibility is necessary when using load cells based on strain gages. The

maximum deviation of the angle given in Table 2 was found by measuring the deflection due to a known weight and

then relate this to the maximum measured forces in the given range of angles. The sensitivity k was found by local

linearization of the measured results in Fig. 6.

Some vibrations of the test-section must be expected when mounted on a motor-driven carriage. The lowest

eigenfrequency of the set-up was estimated by modelling the sensor as a rotational spring and the test-section as a rigid

beam. The spring constant of this spring was found by measuring the static deflection of the forward end of the test-

section when subjected to a known, static load. The value from a linear square fit of the measurements corresponded

well with stiffness specification given for the sensor. The result for the long cylinder was an eigenfrequency of 4.6Hz,

which was confirmed by performing fast Fourier transforms (FFT) on the measured time series. By reading the force

sensor outputs for known loads and deflections, the relation between the measured force and the deflection of the test-

section front end was established. The standard deviation of the force measurement within a single run was at worst

1N, which corresponds to a peak-to-peak amplitude of 1.1mm at the forward end. This amplitude is small compared to

the diameter and even if the mass transport described by Schlichting (1979) for a 2-D cylindrical cross-section

oscillating with small amplitude and laminar boundary layer flow takes place, there should be no effect on the mean

value of the force. The effect of vibration is therefore included in the precision error and not as a bias uncertainty. The

same assumption is used in the oscillating case where the time series are filtered by a forward and inverse FFT

procedure at a frequency slightly below the lowest eigenfrequency.

Calibration was performed at the same time as the deflection studies, recording the voltage outputs with known

loading. The estimated calibration errors were found from the variation of the factor when calculating it from different

measurements.

The uncertainty of the tow speed was estimated by comparing the derivative of the measured position of the carriage

with the speed setting in the input.

The other category in Table 2 includes effects like clearances at the test-section ends, cylinder vibrations, generated

waves, residual flow in the tank, and model dimensions. A comprehensive discussion of these effects is given in Ersdal

(2004), where the residual wake flow in the tank was found to be the most important. The combined effect was found be

no more than 10% of the precision error of the force measurement, so this number is used here. In the experiments

described in Ersdal (2004) a pair of struts was placed also in front of the test-section. The presence of these struts was

found to give significant bias errors, thus the cantilever beam design of the present set-up. Other error sources like

sensor errors, alignment, and errors in the analysis procedure are assumed to be precision errors only, and therefore

accounted for by repeating the experiments. Care was taken in analyzing the experiments to avoid systematic errors due

to filtering and time series end-effects.

In order to ensure a turbulent boundary layer over the length over the cylinder for a ¼ 0, a band of silica grains was

applied around the aft part of the nose, see Fig. 5(a). For the cylinder diameter and Reynolds numbers involved here,

there is no effect of curvature in the friction coefficient according to White (1972), thus the boundary layer is assumed to

be that of a flat plate. The required roughness height to trip the boundary layer to turbulent state is then �4820n=U

(Blevins, 1992), where n is the kinematic viscosity of the fluid. For a tow speed U ¼ 0:4m s�1 this requires the roughness

height, or grain size, of 2mm. For comparison, a screen was placed upstream of the cylinder as shown in Fig. 5(b) to

ensure a turbulent boundary layer at all angles for selected runs. The screen consisted of a wire mesh with wire diameter

2mm and a mesh size of 20mm and was placed 250mm upstream of the start of the test-section (the distance was kept

constant as the angle of attack increased). Simplifying and considering a single bar element of the mesh, the turbulence

level should be 1
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu02 þ v02 þ w02Þ=ðU2Þ

q
’ 0:02 at the start of the test-section, see in Blevins (1992, Appendix B). From

Tables 10 and 11 in the same reference, boundary layer transition should then be completed at a Reynolds number

Rex ’ 1� 105. This number is slightly above the lowest Reynolds number at x ¼ 0:2m and a ¼ 0, but at least for tow-

speed U ¼ 0:6m s�1 the screen should ensure a turbulent boundary layer on the cylinder also for high angles.
Fig. 5. Tripping the boundary layer: (a) silica grains applied in a band around the nose; (b) screen placed upstream of the cylinder.
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The test-section is assumed to be smooth, which requires a roughness height �o100n=U (Blevins, 1992,

Tables 10–13). For relevant Reynolds numbers, this gives k=do1:5� 10�3, which according to Table 1 is fulfilled

for the spray-painted surface.

In the case of constant angles, the resulting transverse forces are represented as a nondimensional coefficient given by

Eq. (1):

Cn ¼
Fn

1
2
rV2Ld

, (24)

where Fn is the measured normal force on the test section, V the relative velocity between the body and the ambient

fluid and d and L the diameter and length of the test-section as given in Table 1. In this case the carriage speed U equals

the relative velocity so that U ¼ V . The last two lines in Table 2 give the estimated bias and total error for this

coefficient. The results in the last line are 5% or less of the measured values.

An alternative to Eq. (24) is to use Eq. (4) to form a coefficient related to the drag coefficient of a 2-D cross-section of

the cylinder. However, because the normal component of the velocity defined in Eq. (3) will go to zero as a! 0, this

representation of the results is very sensitive to errors in the angle of attack, and large scatter for small angles must be

expected when representing the results this way.

For the oscillating cylinder the normal force is normalized with the velocity component along the axis u, see Eqs. (8)

and (9). In the experiment the velocity is the tow-speed of the carriage, thus u ¼ U and the bias error estimates are the

same as for the constant angle case. The alternative to u is the amplitude of the cross-flow velocity, but the problem of

sensitivity for small values would then be the same as in the stationary case.
3. Measured forces at constant angle of attack

In Figs. 6–10 the measured normal force coefficients defined in Eq. (24) are plotted as a function of the angles of

attack a. The gray areas in the plots represents the expected values based on the cross-flow principle, see Eq. (6). The

area indicates values of Cd from 0.8 to 1.2, the expected values from Blevins (1992, Table 10.18).

Figs. 6 and 7 show the measured Cn values for the long cylinder at three different tow-speeds, Fig. 7 for small angles

of attack. The boundary layer was in these cases tripped by the band of silica grains around the nose. For angles up to

about 6�, the effect of changes in Reynolds numbers is small, while in the range from a ’ 6� to 16� the effect is

important. For even higher angles the Reynolds number dependence again seems to be small.

The range of Cd values in the 2-D case was explained by the state of the boundary layer, and something similar seems

to take place here, but related to the Reynolds number of the longitudinal component of the flow. This is illustrated in

Fig. 9 where the transverse drag coefficient is expressed as Cd ¼ Cnðsin aÞ�2. The argument of Fig. 9 is a Reynolds

number based on the length parallel to the incident flow; d ðsin aÞ�1, here denoted the ‘real’ Reynolds number, see Fig.

8. The results in Fig. 9 are for all test cases with a44�, including the short cylinder. As mentioned in the error analysis,

some scatter must be expected due to the sensitivity of the angle of attack, but there definitely seems to be a transition

region between Ud=ðn sin aÞ ’ 2� 105 and 3:5� 105, which corresponds closely to the transition region for the 2-D

case (a ¼ 90�); see, e.g., Faltinsen (1990, Chapter 6). For ‘real’ Reynolds number below this, which corresponds to high

angles of attack, the flow is sub-critical according to the 2-D nomenclature, with an expected Cd ’ 1:2 . As the angle

decreases, and/or the velocity increases, the ‘real’ Reynolds number increases (as does the scatter) and the flow becomes

critical and eventually transcritical where Cd ’ 0:8 is expected. This suggests some similarity of the current case and the

drag reduction found in 2-D when a proper Reynolds number is applied.

To further investigate the effect of the boundary layer transition, Fig. 10 compares the results for the tripped

boundary layer with measurements for the cylinder without the band of grains both in free stream and with a screen

placed upstream as shown in Fig. 5(b). The results for the smooth cylinder follow the expected results for a laminar

boundary layer, while results with the screen applied follow the expected results for a turbulent boundary layer, as

expected from the above discussion.

Fig. 11 compares results with two different lengths of the cylinder. From the 2Dþ t results in Section 1 it is expected

that the normal force coefficient on the short cylinder is smaller than for the long one when towed at the same velocity,

particularly for angles of attack less than 5�. The experimental results show very little difference between the two

cylinders, indicating that the steady flow pattern develops even more rapidly than suggested in Fig. 1. For the small

angles, the boundary layer is turbulent for both cylinders in Fig. 11, so this compares with the conclusion of Sarpkaya

(1966) that in turbulent flow the steady flow develops almost instantly. For angles above 10� the boundary layer may be
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S. Ersdal, O.M. Faltinsen / Journal of Fluids and Structures 22 (2006) 1057–10771068
laminar when the separation starts, but according to Fig. 2(b) the averaged force coefficient is close to the 2-D value at

these angles and the effect of finite length of the cylinder is small also in this region.

The normal force on the nose section is not the focus here; but since the data is so readily available, the

measured forces are compared to the slender body theory (Newman, 1977) in Fig. 12. The lift coefficient is
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calculated from

CL ¼
Fnose

1
2
rU2 d2

, (25)

where Fnose is the measured transverse force on the nose section. For small angles, slender body theory gives CL ¼
1
2
pa,

with a in radians. A correction of 7.5% due to the viscous boundary layer was found in Hoerner and Borst (1985, Figs.

19 and 16) and is represented by the dashed line in Fig. 12. For most of the data points the expected values are within

the error band of the measurements. The exceptions are for the lowest speed where the measured force seems to be a

little higher than expected, and for a410�–12�. In this range the angle of attack cannot be considered small, so some

deviation must be expected.
4. Models of the normal force at constant angle of attack

Mathematical models of the normal force were discussed in the introduction. To compare models with the

experiments in a systematic way, the standard error of estimation (SEE) will be used. This is defined as (Coleman and

Steele, 1989)

SEE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN

i¼1

ðXmod
i � X

exp
i Þ

2

vuut , (26)

where Xmod
i and X

exp
i are the N modelled and experimentally measured values, respectively. By comparing this value to

the experimental uncertainty, the ‘‘goodness’’ of a model can be expressed. If the error of estimation is less or equal to

the experimental results the model is as good as the measurement and further improvement of the model is not possible

based on the current data. Results for force models for constant angles of attack are given in Table 3. The first three

models are discussed in the Introduction, see Eqs. (5)–(7). The coefficient in the cross-flow formulation is set to

Cd ¼ 1:15 rather than 1.2 since the lower value was found to minimize the estimation error. The last model is a modified

version of the cross-flow principle to account for the change in coefficient due to the boundary layer. The normal force

coefficient is then expressed

Cn ¼ ½Cnt þ f ða;UÞðCnl � CntÞ� sin aj sin aj, (27)

where Cnl and Cnt are the coefficients corresponding to laminar and turbulent boundary layer, respectively. The

function f ða;UÞ varies between zero and one. From inspection of the experimental results in Fig. 6 it is chosen as a

linear transition

f ða;UÞ ¼

0 if aoat;
a� at

al � at

if atpapal ;

1 if a4al :

8>><
>>: (28)

The angle at is the upper limit for turbulent boundary layer and al is the lower limit for laminar boundary layer.

The values are found from Ud=nðsin atÞ
�1
¼ 3:4� 105 and Ud=nðsin alÞ

�1
¼ 2:0� 105. The values of the coefficients in

Eq. (27) are Cnt ¼ 0:8 and Cnl ¼ Cd ¼ 1:15.
The modified cross-flow principle is then able to reproduce the results to the same accuracy as the measurements and

can therefore be judged as a success. The exception is angles less than 4�–5� where a linear model performs slightly
Table 3

Suggested models for constant angle of attack

Case Cn SEE ec

Linear (jajo ¼ 4�) 0:068 sin a 1:25� 10�3 0:70� 10�3

Cross-flow principle 1:15 sin aj sin aj 3:77� 10�3 2:17� 10�3

2Dþ t with laminar boundary layer CD sin aj sin aj 8:42� 10�3 2:17� 10�3

Modified cross-flow principle Eq. (27) 2:08� 10�3 2:17� 10�3

SEE is the standard error of estimation, Eq. (26), while ec in the last column is the mean of the calculated errors for each measurement,

Eq. (21).
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better. Assuming a friction coefficient as for a flat plate at ReL ¼ 1:5� 106, and a turbulent boundary layer, gives

pCF ’ 0:012 in Eq. (5). The coefficient Cn1 ¼ 0:068 in the linear model is based on a least-square-fit of the data for

ao4�. This value is higher than the range recommenced by Paı̈doussis (2004) and cannot be explained by skin friction

alone. This is discussed in Thwaites (1960, Chapter IX.19–22) where the high value is explained by a secondary flow

inside the boundary layer.

The cross-flow principle is found to give a better estimation than the 2Dþ t theory, again showing that the

development of the flow is different in this case than in the case of an impulsively started cylinder with a laminar

boundary layer.
5. Measured forces for oscillating cylinder

The results from measuring the normal force on the cylinder when running at constant speed along its axis and with

harmonic oscillation in one normal direction are represented by the coefficients of the Fourier series in Eqs. (8)–(11).

The coefficients for k ¼ 1 and 3 are plotted in Fig. 13.
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The abscissa axes in Fig. 13 are the ratio between the velocity amplitude of the transverse oscillation (oA) and the

incident flow velocity along the cylinder axis u. Note that this is the tangent of the maximum angle of attack during a

period of oscillation and it is therefore equivalent to the angle of attack for the constant angle case.

The error of truncating the series is illustrated in Fig. 14 where the expected relative standard error of estimation

SEEr of the Fourier series are compared with the expected error of the measurement e95r:

e95r ¼
1

N

XN

i¼1

e95 i

Fn0 i

, (29)
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SEEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 2

XN

i¼1

ðXmod
i � X

exp
i Þ

2

F2
n0 i

vuut . (30)

Here the index i spans N experimental values, and Fn0 i is the measured force amplitude for experiment i. See also Eq.

(26). The estimation error is multiplied by a factor 2 in the figure to compare it with the 95% confidence interval of the

measurements. The left part of the figures covers all cases in the experiment, while the right part only includes velocity

ratios oA=uo0:18. In both cases the estimation error with k ¼ 1 and 3 in Eq. (8) is comparable to the experimental

error, and including more terms will not give more information based on the current measurements.

The parts of Eqs. (16) and (18) not including the velocity amplitude ratio are shown in Figs. 15 and 16. These

equations include only the first term in the Fourier series so the estimate in Eq. (13) cannot in general be better than

about 15% of the force amplitude according to the bars for k ¼ 1 in Fig. 14. This is also known from the 2-D case of an
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bars represents period-to-period standard variation of the Fourier coefficient B1: —, y ¼ 1:2x2.

0.14

L
d

=10

0.12

0.1

0.08

0.063 8
B

1

0.04

0.02

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

� A

�

u

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
� A
u

0.14

0.12

0.1

0.08

0.063 8
B

1

0.04

0.02

0

�

L
d

=30

Fig. 17. Velocity amplitude ratio dependence of the drag coefficient Cd in Eq. (18) for small velocity ratios. Bars represent period to

period standard variation of the Fourier coefficient B1. Gray area corresponds to 0:8pCdp1:2; —, y ¼ 0:076 x.



ARTICLE IN PRESS
S. Ersdal, O.M. Faltinsen / Journal of Fluids and Structures 22 (2006) 1057–1077 1073
oscillating cylinder section, see e.g (Sarpkaya and Isaacson, 1981). Obviously, the velocity amplitude ratio oA=u is the

dominating parameter, while the effects of parameters like length-to-diameter ratio, amplitude-to-diameter ratio and

Reynolds number are of higher order. This is in contrast to the 2-D case, where the amplitude-to-diameter ratio, usually

expressed by the KC number, is a dominant parameter in the range of amplitudes used in the experiment.

A least-squares-fit of the data in Fig. 15 gives

�
2

p
A

d
A1 ¼ 1:02

oA

u

� �2

. (31)

The standard error of estimation for this fit is 0.06 which is about three times the period-to-period variation of A1.

Inserting in Eq. (16) gives

Ca ¼ 1:02, (32)

which is very close to the theoretical result of 1.0 for inviscid flow and strip theory. The same procedure for the data in

Fig. 16 and Eq. (18) gives

Cd ¼ 1:2, (33)

which is a typical asymptotic value for 2-D flow when the amplitude to diameter ratio increases.

Because the state of the boundary layer was found to be important in the stationary case, the band of silica grains

were kept also for the oscillating case in order to trip the boundary layer at low angles of attack. This was to see if the

variation of force due to change in the boundary layer as discussed in connection with Fig. 9 could be seen in this case

also, and the result is illustrated in Fig. 17. The range of velocity amplitude ratios in these plots corresponds to angle of

attacks with large Reynolds number dependent variations of the normal force in the stationary case, see Fig. 6. For

small velocity ratios it was found that the L=d ratio is important, so the results for each are shown separately. Though

the amplitude-to-diameter ratio was also found to have some effect, the main scatter at a given velocity ratio is a

Reynolds number effect. Fig. 18 plots the measured drag coefficient against a Reynolds number defined as in Fig. 8,

using the amplitude of the angle of attack. The trend is the same, but the transition seems to start at slightly lower

Reynolds numbers than in the stationary case. Particularly for the smallest amplitudes, the Cd values seem to be quite

low.

For the short cylinder the drag term coefficients are in general lower than for the long cylinder, indicating that some

development along the cylinder as expected from the 2Dþ t principle does take place.

The lowest velocity ratio in the experiment corresponds to a maximum angle of attack of 3:7�, which is just inside the

linear range in Table 3. However, because the velocity ratio corresponds to the maximum angle of attack during a cycle,

the angle will be less than 4� for most of the cycle also for higher velocity ratios and a linear curve fit was therefore done
0 1 2 3 4 5 6

x 10
5

0.4

0.6

0.8

1

1.2

1.4

Cnl

Cnt

ud (sin 0) 1

C
d

=
3� 8

B
  (

   
 )

1
u

2
�

A

��

Fig. 18. Drag coefficient Cd as function of ‘real’ Reynolds number (a0 ¼ arctanðoA=uÞ is the maximum angle of attack during a cycle).

Bars represent period to period standard variation of the Fourier coefficient B1. Symbols denote the oscillation amplitude: ,, A=d ¼ 1;

�, A=d ¼ 2; n, A=d ¼ 3. The results are for the long cylinder with 0:1poA=up0:4.



ARTICLE IN PRESS

0.025

0.02

0.015

0.01

0.005

0

-0.005

C
n

-0.01

-0.015

-0.02

-0.025
0 50 100 150 200

� [deg]

250 300 350 400

Fig. 20. Time series for oA=u ¼ 0:1, A=d ¼ 1, and L=d ¼ 30: —, Fourier series with k ¼ 1; 3; – –, Morison’s equation; � � �Morison’s

equation with modified drag term. The shaded area represents the 95% confidence interval of the measurements.

Linear Cross Flow Mod. Cross Flow
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e 95
r
,2

×
SE

E
r

e 95
r
,2

×
SE

E
r

Drag Term

All

Linear Cross Flow Mod. Cross Flow
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Drag Term

< 0.18� A
u

� A
u

Fig. 19. Expected error when reproducing DnðyÞ with time-domain models. The solid line is e95r (Eq. (29)), the bars are 2� SEEr (Eq.

(30)) for given drag term formulations.

S. Ersdal, O.M. Faltinsen / Journal of Fluids and Structures 22 (2006) 1057–10771074
for all data points with velocity ratio less or equal to 0.1. The resulting line is plotted in Fig. 17. Inserting this in Eq. (19)

and realizing that cos a ’ 1 for small a gives a linear model of the damping. The value of the coefficient was found to be

Cn1 ¼ 0:076, (34)

which is comparable to the value found in the stationary case, see Table 3.
6. Time-domain models of the oscillating force

The Fourier series formulation above was successful in reproducing the experimental results, but in a general time-

domain simulation the motion of a body is not harmonic and the forces cannot be described this way. In the

general case it would be preferable if only the instantaneous accelerations, velocities and the orientation of the body

were included in the force model. Due to the low scatter of Fig. 15 it will be assumed that the inertia part can be
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modelled as in Eq. (12), with coefficient from Eq. (32). Possible expressions for the drag term are the linear form in

Table 3 with coefficient from Eq. (34) or the cross-flow term in Table 3 with coefficient from Eq. (33). In addition, an

attempt is made to formulate a model based on the discussion above. This is the same as the modified cross-flow model

in Eqs. (27) and (28) but the limits for the real Reynolds number are set to Ud=nðsin atÞ
�1
¼ 3:0� 105 and

Ud=nðsin alÞ
�1
¼ 1:5� 105 according to Fig. 18. The coefficients for laminar and turbulent flow are Cnl ¼ 1:3 and

Cnt ¼ 0:7, respectively, indicated by lines in Fig. 18. In addition, values for instantaneous angles of attack less than 6�

are replaced with the linear model. The expected errors, defined as twice the standard error of estimation, are shown in

Fig. 19.

The error levels are quite high, but the modified model does improve the performance. This is again taken as an

indication that the shift in boundary layer seen in the stationary case also does take place in the oscillating case. It also

seems that a linear model is the better choice for small angles.

Selected time histories are shown in Figs. 20–22. Note that the measured time histories do not show the shape

associated with a quadratic drag term even for high velocity amplitude ratios. This is even true for A=d ¼ 3 where the

drag term is dominant. That the drag, or velocity-dependent, term dominates here is indicated by the fact that the phase

angle of the force peaks is close to the phase angle of the maximum velocity (y ¼ 180� and 360�). The absence of a
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quadratic drag term then seems to be the main reason for the poor results in Fig. 19, and it is particularly bad for

A=d ¼ 2 where the inertia and drag terms are of comparable magnitude.
7. Conclusion

From the discussion in the foregoing it is clear that the axial flow does influence the normal force on a cylinder for

low angles of attack. The important parameters in the stationary case are the angle of attack and a Reynolds number

based on the length of the cylinder parallel to the incoming flow. In the oscillating case, the amplitudes of these

parameters were used to show a similar dependence. Other parameters like length-to-diameter ratio and amplitude-to-

diameter ratio of the oscillation are found to be of lesser importance than expected a priori.

If the angle of attack is less than about 4�–5�, the normal force is linear with the normal velocity component of the

ambient flow, similar to the equation of lift on an airfoil section. This seems to be the case both for a steady and an

oscillating angle of attack. The coefficient is too high to be accredited to skin friction alone.

For angles larger than 5�, the cross-flow principle can be applied if the state of the boundary layer is taken into

account. A ‘real’ Reynolds number can be defined based on the instantaneous length of the body parallel to the incident

flow. The normal force coefficient plotted against this Reynolds number looks very similar to the drag coefficient of a 2-

D cylinder plotted against the Reynolds number based on the diameter. This means that there is a sub-critical region, a

transition region and a super-critical region where the drag coefficient is lower than in the sub-critical flow domain.

For the oscillating case the main parameter seems to be the ratio of transverse velocity amplitude to the axial velocity,

or the maximum angle of attack. The amplitude to diameter ratio is also a parameter, but the importance is found to be

less than expected from the 2-D case.

Also the length-to-diameter ratio was found to be of less importance than a 2Dþ t theory might suggest, at least for

the stationary case. In the oscillating case the force term seemed to be smaller for the short cylinder than for the long

one, particularly at small angles.

In simulating slender marine systems with a high axial component a model based on the angle of attack and the

absolute value of the relative velocity between body and fluid as in Eq. (27) seems to be the best choice. For the

oscillating case, the errors in the estimated force might be quite high, the expected standard error of estimation for the

best model discussed here is about 15% of the force amplitude.

The current study only includes the normal component of the force. Because asymmetric vortex separation associated

with the cross-flow principle certainly takes place, it is expected that a bi-normal force is also present. Also, the present

study assumes a smooth cylinder, thus the effect of roughness or something like a stranded wire is not considered, and

might be a topic for further studies. Another topic for further studies is to apply and verify the current results in

calculating the dynamic response of a flexible cylinder where the modelling of the damping may be crucial.
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